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Abstract: The protection mechanisms of many mainstream 
operating systems were inadequate to support confidentiality 
and integrity requirements for end systems. To address this 
problem, the National Security Agency (NSA) worked with 
Secure Computing Corporation (SCC) to develop a strong, 
flexible mandatory access control architecture based on Type 
Enforcement. The NSA has integrated the SELinux 
architecture into the Linux operating system to transfer the 
technology to a larger developer and user community. This 
paper presents the design and implementation for integrating 
the security mechanisms of the SELinux architecture into the 
Linux kernel. 

1. INTRODUCTION:
The Linux kernel is a Unix-like computer operating system 
kernel. The Linux kernel is a widely used operating system 
kernel world-wide, the Linux operating system is based on 
it and deployed on both traditional computer systems, 
usually in the form of Linux distributions, and on 
embedded devices such as routers. The Android operating 
system for tablet computers and smartphones is also based 
atop the Linux kernel. The Linux kernel was initially 
conceived and created in 1991 by Finnish computer science 
student Linus Torvalds, for his personal computer and with 
no cross-platform intentions, but has since expanded to 
support a huge array of computer architectures, many more 
than other operating systems or kernels. Linux rapidly 
attracted developers and users who adapted code from other 
free software projects for use with the new operating 
system. The Linux kernel has received contributions from 
nearly 12,000 programmers from more than 1,200 
companies, including some of the largest software and 
hardware vendors. 
Security-Enhanced Linux (SELinux) is a Linux kernel 
security module that provides a mechanism for supporting 
access control security policies, including United States 
Department of Defense style mandatory access controls 
(MAC). SELinux is a set of kernel modifications and user-
space tools that have been added to various Linux 
distributions. Its architecture strives to separate 
enforcement of security decisions from the security policy 
itself and streamlines the volume of software charged with 
security policy enforcement. The key concepts underlying 
SELinux can be traced to several earlier projects by the 
United States National Security Agency.  
We can further progress with learning the integration 
strategy for SELinux. The integration style greatly depends 
on the end system core structure. End systems must be able 
to enforce the separation of information based on 
confidentiality and integrity requirements to provide system 
security. Operating system security mechanisms are the 
foundation for ensuring such separation. Unfortunately, 
existing mainstream operating systems lack the critical 
security feature required for enforcing separation: 
mandatory access control. As a consequence, application 

security mechanisms are vulnerable to tampering and 
bypass, and malicious or flawed applications can easily 
cause failures in system security. To address this problem, 
the National Security Agency (NSA) worked with Secure 
Computing Corporation (SCC) to research a strong, flexible 
mandatory access control architecture based on Type 
Enforcement, a mechanism first developed for the LOCK 
system . The NSA and SCC developed two Mach-based 
prototypes of the architecture: DTMach and DTOS. The 
NSA and SCC then worked with the University of Utah’s 
Flux research group to transfer the architecture to the Fluke 
research operating system. During the transfer, the 
architecture was enhanced to provide better support for 
dynamic security policies. This enhanced architecture was 
named SELinux. The NSA is now integrating the SELinux 
architecture into the Linux operating system to transfer the 
technology to a larger developer and user community. 
Researchers in the NSA’s Information Assurance Research 
Office have implemented the architecture in the major 
subsystems of the Linux kernel, including mandatory 
access controls for operations on processes, files, and 
sockets. The Secure Execution Environments (SEE) group 
at NAI Labs is working with the NSA in further developing 
and configuring this security-enhanced Linux system. SCC 
and MITRE are assisting the NSA in developing 
application security policies and enhanced utility programs. 
This paper describes work by the NSA and NAI Labs in 
integrating the security mechanisms of the SELinux 
architecture into the Linux kernel.  
The paper begins by providing an overview of the SELinux 
policy model and its Linux security approach.While the use 
of a simpler access control model might make it easier to 
ensure that security goals are met, we believe that this 
would result in applications failing to run conveniently, and 
ultimately, the circumvention of these security goals. The 
comprehensive nature of the SELinux policy model enables 
flexible trade-offs between application and security goals. 
For example, the SELinux example policy itself is 
developed by proposing application policies and refining 
them based on the policy violations that may be generated.  
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2. SELINUX POLICY MODEL: 
While SELinux supports a variety of access control policy 
models , the main focus of SELinux policy development 
has been an extended Type Enforcement (TE) model . In 
this section, we provide a brief overview of the SELinux 
policy model concepts, focusing only on the concepts that 
are relevant to the analysis that we perform. A number of 
other concepts are represented in the SELinux extended TE 
model, such as roles and identity descriptors, that we do not 
cover here. The traditional TE model has subject types 
(e.g., processes) and object types (e.g., files, sockets, etc.), 
and access control is represented by the permissions of the 
subject types to the object types. In SELinux, the 
distinction between subject and object types has been 
dropped, so there is only one set of types that are object 
types and may also act as subject types. All objects are 
labelled with a type. All objects are an instance of a 
particular class (i.e., data type) which has its own set of 
operations. Permission associates a type, a class, and an 
operation set (a subset of the class’s operations). Thus, 
permissions associated with SELinux types can be applied 
independently to different classes. For example, different 
rights can be granted to a user’s files than to their 
directories. In fact, since the objects are of different classes, 
they have different operations. Should the administrator 
want to give different access rights to two objects of the 
same class, then these objects must belong to different 
types. Permission for a (subject) type to perform operations 
on a (object) type are granted by the allow statement. Any 
element of the permission relationship can be expressed 
using this statement, so the expression of least privilege 
rights is possible. The dontaudit statement provides a 
variation on the basic permission assignment. A 
combination of allow statements result in a union of the 
rights specified, whereas a combination of dontaudit 
statements on the same type pair and class are intersected. 
In addition, the extended TE model also has type at tributes 
that represent a set of types (i.e., all the types with that 
attribute assigned). Type attributes enable assignment to 
multiple types at a time. For example, permission can be 
assigned to each subject type with that attribute or a subject 
can be assigned permission to each object type with that 
attribute. 
Containment is enforced by limiting the permissions 
accessible to a subject type (as described above), limiting 
the relabelling of object types, and limiting the domain 
transitions that can be made by a subject type. Relabel 
rights are controlled in SELinux by limiting access to 
relabel-from and relabel-to operations. As the names 
indicate, relabel-to enables objects to be relabelled to that 
type and relabel-from enables objects of a particular type to 
be relabelled. Domain transitions can occur when a subject 
type executes a new program. Again, SELinux defines an 
operation, called transition, to perform these transitions. A 
subject type must have transition permission for the 
resultant subject type in order to affect a domain transition. 
The SELinux model also has statements for type transition 
and type change. Type transition statements are used by 
SELinux to automatically compute transitions, but are not 
necessary for control (i.e., transition permissions are always 

necessary). Type change statements alter the type of an 
object upon access by the specified subject type. Such 
statements are useful when a system administrator logins in 
using a user’s teletype. Type change statements transition 
the object type of the teletype to prevent users from altering 
input. In order to simplify the task of expressing policies, 
the SELinux extended TE model also includes a large 
number of macros for expressing sets of policy statements 
that commonly occur together. 

 
 
2.1 SELinux Example Policy: 
The SELinux community is working jointly on the 
development of UNIX application policies whose 
composition is called the SELinux example policy. The 
SELinux example policy does not define a secure system, 
but is intended as input to the development of a custom 
policy for each site’s security goals, commonly called a 
security target. Unfortunately, customization is not simply 
composition of the policies for the applications of interest. 
The application policies themselves are somewhat 
specialized to the environment in which they were 
developed, and interactions between the policies of 
multiple applications may lead to vulnerabilities. In 
general, the composition of policies that are proven secure 
may not result in a secure system. The task of 
customization is further complicated by the size of the 
example policy and the complexity of the extended TE 
model. The SELinux example policy for Linux 2.4.19 
consists of over 50,000 policy statements (i.e., the 
processed macro statements in policy.conf). Accordingly, 
this specification represents over 700 subject types and 
100,000 permission assignments. We believe that size and 
complexity of the SELinux example policy make it 
impractical to expect that typical administrators can 
customize it to ensure protection of their trusted computing 
base (TCB) and to satisfy their site’s security goals on this 
TCB. SELinux example policy is valuable to building 
secure systems, for following two reasons primarily:  
(1) It provides a flexible enough representation to capture 
the permissions necessary for UNIX applications to execute 
conveniently. 
(2) It provides a comprehensive definition of a reference 
monitor for UNIX.  
First, the SELinux example policy is developed per 
application in a manner that identifies a superset of the 
permissions required to run an application conveniently 

Vinay Karajagi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (4) , 2015, 3388-3391

www.ijcsit.com 3389



while possibly meeting a particular security target. What 
typically happens is that a proposal is made for an 
application policy, then this policy is tested by the 
community when they use the application. Since SELinux 
reports authorization failures (i.e., the lack of permission 
requested), it is much easier to determine that insufficient 
permissions were assigned than whether security 
vulnerability is created. Thus, a verified proposal for least 
privilege permissions for each application is represented by 
the SELinux policy. What we need is a better way to test 
whether our security goals are satisfied, such that conflicts 
can be identified and addressed.  Second, the SELinux 
example policy is a comprehensive representation of UNIX 
access control. The SELinux model aims to 
comprehensively control access to all classes (i.e., kernel 
data types) that may be operated upon by a user-level Linux 
process. There are 29 classes defined in the SELinux 
example policy. Each class has its own set of operations 
that are intended to capture all the relevant subtleties in 
accessing and modifying a class. Given the scope of the 
SELinux example policy at this granularity, the SELinux 
example policy provides as precise and comprehensive a 
repository of UNIX application access control information 
as exists today. We need to leverage this repository in the 
development and refinement of security goals, but provide 
such leverage through higher-level concepts that enable 
effective management. 

 
 
2.2 SELinux Security: 
Unlike early MAC models like Bell-LaPadula and Biba, a 
TE model does not explicitly indicate the security goals of 
the policy. Thus, the policy implies the security goals of the 
system. For a TE system, more like an access matrix, we 
only learn that certain subjects can only perform certain 
operations on certain objects. The security goals of the 
policy are not represented at a higher-level than this. The 
SELinux model provides an approach by which secrecy and 
integrity properties may be achieved with least privilege 
permissions and containment of services. The system 
administrators create a policy that is restrictive with respect 
to granting rights that violate secrecy and integrity 
properties and we use the notions of least privilege and 
containment to minimize the damage due to compromises 
where these occur. From our perspective, the integrity of 
the TCB is the basis of security, so that is the focus of our 
analysis. In general, it is preferable to have a “minimal” 

TCB. The smaller the TCB, the easier it is to verify the 
components. However, if the minimal TCB subjects are 
dependent on other subjects, then these other subjects must 
be added to the TCB or dependencies must be removed. In 
this paper, we will identify dependencies and determine 
how to resolve them to keep our TCB as small as is 
feasible. Since we are striving for a minimal TCB, we do 
not assume a two-level integrity system (system and user), 
but rather we start with the most fundamental system 
services and try to determine how the integrity of these can 
be enforced. In this paper, we only explicitly examine the 
TCB and non-TCB boundary. Further, we note that the 
benefits of least privilege permissions and containment are 
not relevant to the protection of the TCB. Since the TCB 
subject types can legitimately transition to any other subject 
type, containment is not possible for the TCB subjects. 
Therefore, the focus is on the integrity of these services. 
kernel_t is the primordial subject type in the SELinux 
system. It transitions to init_t which then can start a variety 
of services. Key to our analysis are the administrative (e.g., 
sysadm_t, load_policy, setfiles_t, etc.) and authentication 
subject types (e.g sshd_t, local_login_t, etc.) that determine 
the basis for security decisions in SELinux. We also 
include initrc_t and inetd_t because these services initiate 
many of the services in a UNIX system. Of course, there 
are lots of other services upon which the correct execution 
of applications is necessary, but we chose this proposal for 
a minimal TCB based primarily on the early appearance of 
these services in the type transition hierarchy. Both of these 
features indicate that vulnerabilities in that subject type will 
be difficult to contain. While this TCB represents a small 
number of subject types, the complexity of their 
interactions with the rest of the system in the SELinux 
policy makes manual verification impractical. First, each 
subject type is included in around 500 to over 1000 policy 
statements in policy.conf. Manual examination of this 
many statements alone are impractical, but these statements 
must be compared to the other thousands to determine 
whether a significant conflict exists. Automated tools are 
necessary to represent the security goals, identify conflicts, 
and provide as much support as possible to conflict 
resolution. 
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3. CONCLUSION: 
In this paper, we have presented an approach for analyzing 
integrity protection of the SELinux example policy. The 
SELinux module supports the recent Linux Security 
Modules (LSM) framework for implementing mandatory 
access control on the Linux kernel. The SELinux example 
policy is undergoing active development and is being 
applied in several installations. The aim is for 
administrators to take the SELinux example policy and 
customize it to their site’s security goals. This is quite 
difficult because the SELinux policy model is quite 
complex and the SELinux example policy is large. Our aim 
is to provide an access control model to express site 
security goals and resolve them against the SELinux policy. 
In particular, we want to identify a minimal system TCB 
for the SELinux example policy that satisfies Clark-Wilson 
integrity restrictions relative to the rest of the system. 
UNIX systems are not designed to meet Biba integrity, but 
the Clark-Wilson integrity policy enables a description 
where key data can be identified (those data used by TCB 
subject types), and sanitization of low integrity data is 
possible. Understanding this, we can further represent the 
state of the integrity resolution which could be used by the 
access control module to make authorization, audit, and 
intrusion detection decisions. 
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